

Inhalt

Die Unternehmensgruppe	04
WITTENSTEIN cyber motor	06
iTAS	08
Servoantriebssystem für Fahrerlose Transportsysteme	08
Effizienzsteigerung durch ein intelligentes Prinzip	10
Ideal für Intralogistik unterschiedlichster Branchen	12
Flexible, voll skalierbare Antriebsplattform	16
TAS	18
Baugröße 004	
Baugröße 010	
Baugröße 025	
Baugröße 050	
simco® drive	28
Software MotionGUI	
Webserver	
Baugrößen	
Steckeranschlüsse	
Kabel	
Bestellschlüssel	42
Service-Konzept	48
Informationen zur Projektierung	50

GRUPPE

alpha

WITTENSTEIN alpha GmbH Entwicklung und Produktion hochpräziser Servo-Antriebe

motion contro

WITTENSTEIN motion control GmbH Maßgeschneiderte lineare und rotative Servosysteme

cyber motor

WITTENSTEIN cyber motor GmbH Hochdynamische Servomotoren und Antriebs-Elektroniken

WITTENSTEIN alpha entwickelt und produziert mechanische und mechatronische Servo-Antriebssysteme, für Bereiche, in denen ein Maximum an Präzision erforderlich ist. Unsere Produkte setzen weltweit immer wieder Maßstäbe.

Unser Produktportfolio haben wir in zwei Bereiche gegliedert, um so ganz unterschiedlichen Ansprüchen gerecht zu werden: im High End-Segment fokussieren wir uns auf Technologie und Performance, während im General-Segment Preis und bedarfsgerechte Leistung im Vordergrund stehen.

WITTENSTEIN motion control entwickelt und produziert aus Mechanik, Servomotoren, Leistungselektronik und Software individuelle mechatronische Systeme – gerade auch für extremste Anforderungen.

Der Bereich Oil & Gas Subsea fokussiert auf Lösungen für extreme Einsatzbedingungen und im Bereich Defence entwickeln wir mechatronische Antriebssysteme für militärische Anwendungen. Integration ist dabei grundsätzlich unser Leitgedanke – für noch höhere Dynamik und Leistungsdichte.

WITTENSTEIN cyber motor entwickelt und produziert technologisch hochwertige Servomotoren mit anspruchsvollen Antriebs-Elektroniken sowie komplette mechatronische Antriebssysteme mit höchster Leistungsdichte. Speziell bei Sondermotoren für Ultrahochvakuum, radioaktive Umgebung und dem Hochtemperaturbereich besitzen wir eine herausragende Expertise.

Bei individuellen Projekten setzen wir auf eine enge Partnerschaft mit unseren Kunden. Im Entwicklungsprozess tauschen wir uns aus, lernen voneinander und kommen gemeinsam auf neue Ideen. Die Lösungen, die dabei entstehen, helfen unseren Auftraggebern, sich vom Wettbewerb zu differenzieren.

inten

WITTENSTEIN intens GmbH Intelligente Antriebslösungen im und am Körper

aerospace & simulation

WITTENSTEIN aerospace & simulation GmbH Mechatronische Antriebssysteme für die Luftfahrt

attocube systems AG Nanopräzise Antriebs- und Messtechniklösungen

WITTENSTEIN aerospace & simulation entwickelt, integriert, produziert und liefert mechatronische Antriebssysteme für Luftfahrt-, Raumfahrt- und Simulationsanwendungen. Unsere strikten und ausgereiften Entwicklungsprozesse gewährleisten, dass unsere Produkte exakt die Anforderungen unserer Kunden erfüllen.

Unsere innovativen Lösungen sind in missionskritischen, flugkritischen und umgebungskritischen Systemen im Einsatz – also überall dort, wo Höchstleistung, Robustheit, Zuverlässigkeit, begrenzter Bauraum und niedriges Gewicht die Schlüssel zum Erfolg sind.

attocube entwickelt und produziert Antriebs- und Messtechnik für anspruchsvollste Nanotechnologie-Anwendungen. Die Produktpalette reicht von Nanoantrieben und kompletten Mikroskopsystemen bis zu innovativen Sensorik-Lösungen die bisherige Messtechnik in Präzision, Schnelligkeit und Kompaktheit bei weitem übertreffen und auch unter Extrembedingungen eingesetzt werden können.

Jahrelange Erfahrung und Expertise sowohl im wissenschaftlichen als auch im industriellen Marktsegment münden in ein Portfolio, das mit höchster Präzision und Anwenderfreundlichkeit begeistert. Die weit überlegene Technologie revolutioniert bestehende Anwendungen und sichert unseren Kunden nachhaltige Wettbewerbsvorteile.

WITTENSTEIN intens ist der Spezialist für die Entwicklung und Produktion von intelligenten Implantaten. Weltweit sind wir der führende Anbieter für mechatronische Antriebslösungen im Bereich der Extremitätenkorrektur.

Unser herausragendes Know-how in den Bereichen Mechatronik, Miniaturisierung und Systemintegration ermöglicht es, unsere Antriebssysteme in immer mehr Bereichen der Medizintechnik einzusetzen – innerhalb und außerhalb des menschlichen Körpers.

WITTENSTEIN cyber motor GmbH

Umfassendes Produkt Know-how

- Rotative und lineare Servomotoren und Servoaktuatoren
- Antriebs-Elektroniken
- Mechatronische Antriebssysteme

Servomotoren

Lösungen nach Maß

- Kundenspezifische Lösungen mit höchstem Kundennutzen
- Wir handeln ganzheitlich und betreten gerne Neuland
- Von der Konzeption über die Entwicklung zur Produktion und Qualifikation

Entwicklung und Produktion in Deutschland

- Stark ausgeprägtes Entwicklungsteam mit tiefgreifenden Kompetenzen
- Hohe Fertigungstiefe einschließlich eigener Wickelei und zertifizierter Prüfstände
- Höchste Qualität durch innovative und beherrschbare Prozesse

Antriebs-Elektronik

WITTENSTEIN - Einsatz ohne Grenzen

Verpackung

Pharma und Food

Montage- und Messtechnik

Handling und Robotik

Unsere Kernkompetenzen

Mechatronische Systeme

Kompetentes Projektmanagement

- Studien zur Machbarkeit komplexer Antriebsaufgaben
- Definierter Produktentstehungsprozess begleitet von professionellen Projektmanagern
- Zertifiziert nach DIN EN ISO 9001

Von Standardindustrie bis zu rauen Umgebungsbedingungen

- Hohe und tiefe Temperaturen
- Radioaktivität
- Vakuum
- Druck
- Explosionsfähige Atmosphären
- Reinraum

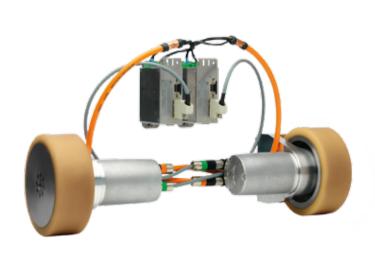
Erprobung, Zulassung und Zertifizierung

- CE
- UL
- ATEX (zertifiziert)
- EHEDG

Intralogistik

Halbleiter-/Elektronikfertigung

Elektromobilität



Öl- und Gasexploration

iTAS®

Servoantriebssystem für Fahrerlose Transportsysteme.

Der erste voll skalierbare, modulare Antriebssystembaukasten für FTS.

Fahrerlose Transportsysteme (FTS) der neuesten Generation brauchen Antriebslösungen, die Komplexität reduzieren – bei höchster Leistungsdichte und Sicherheit.

Der iTAS®-Systembaukasten bringt diesen Anspruch auf den Punkt: Das vollintegrierte, modular konzipierte Servoantriebssystem bietet in seiner Vielfalt, Effizienz und individuellen Skalierbarkeit einen innovativen Lösungsbaukasten, der speziell auf die Anforderungen von FTS und Logistiksystemen abgestimmt ist.

i ... wie individuell

Bedarfsgerecht und branchenspezifisch voll skalierbarer Systembaukasten, der trotz Individualisierung absolut unkompliziert ins Fahrzeug integriert werden kann.

i ... wie intelligent

Einfache, sichere Realisierung unterschiedlicher Fahrzeugkonzepte für alle möglichen Applikationen auf kompaktem Bauraum – durch ein Komplettsystem, in dem alle Bausteine effizient zusammenspielen und Prozessdaten kontinuierlich über den intelligenten Webserver überwacht werden können.

i ... wie interaktiv

FTS einfach konzipieren, individuell skalieren, schnell in Betrieb nehmen, zuverlässig einsetzen – bei voller Kontrolle zu jeder Zeit. Durch die interaktive Benutzerschnittstelle MotionGUI wird "plugand-play" auch bei komplexen Fahrzeugkonzepten möglich.

Smarte Systemlösung zur Realisierung individueller FTS-Konzepte.

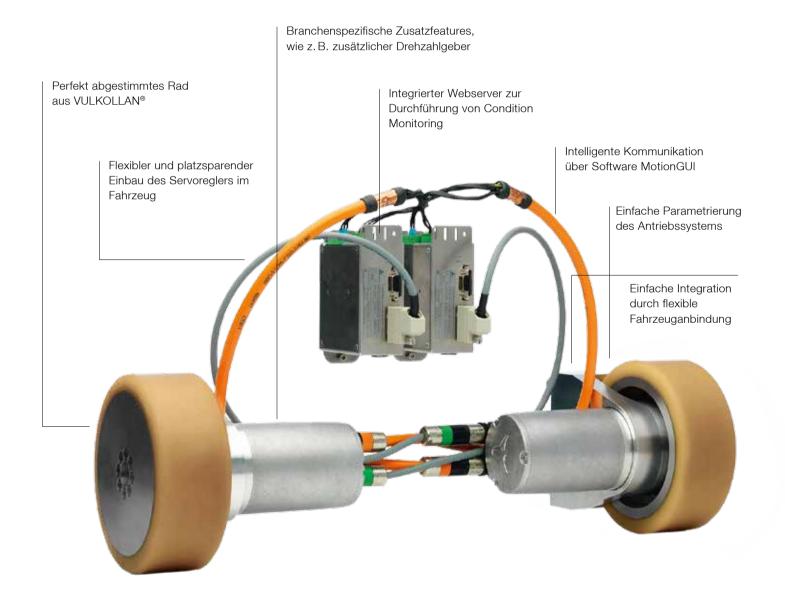
Die Kombination aus einem frei konfigurierbaren Aktuatorsystem, einer intelligenten Servoregler-Baureihe und integrierbaren, branchenspezifischen Komponenten ermöglicht maximale Flexibilität bei der Realisierung von neuen Fahrzeugkonzepten – sicher und platzsparend auf kleinstem Bauraum.

Leistungsdichte Aktuatorik

Das Herzstück des iTAS®-Antriebssystems kann in verschiedenen Baugrößen und Ausstattungsvarianten realisiert werden.

Leicht integrierbare Elektronik

Komplettiert wird das iTAS®-Antriebssystem durch die flexibel einbaubare und einfach zu integrierende Servoregler- Baureihe simco® drive. Mit branchenspezifischen Funktionen wie Bremsenansteuerung, Energierückspeisung und Beschleunigungssensor ist der Antriebsregler optimal für den Einsatz im FTS gerüstet.



Branchenspezifische Elemente

Mit Komponenten wie einer Betriebsbremse, einem zusätzlichen Drehzahlgeber zur Geschwindigkeits- überwachung und einem abgestimmten Rad mit Fahrzeuganbindung kann das Fahrzeug auf branchenspezifische Bedürfnisse ausgelegt werden.

iTAS®

Effizienzsteigerung durch ein intelligentes Prinzip

Ein komplettes System mit vielen Vorteilen.

Vereinfachtes Fahrzeug-Design

Das schlanke Produkt-Design des simco® drive und die kompakte Motor-Getriebe-Einheit TAS sowie branchenspezifische Komponenten wie ein abgestimmtes Rad mit Anbindung vereinfachen die Integration auch in kleine Fahrzeuge erheblich – trotz der kompakten Bauweise ist das Gesamtsystem individuell auf unterschiedliche Leistungsprofile skalierbar. Die branchenspezifischen Features des simco® drive, wie z.B. die externe Einschaltstrombegrenzung, die Softstart-Funktion oder der Buck-Boost-Converter zur Bremsenansteuerung, ermöglichen die Einsparung von zusätzlichen Komponenten im Fahrzeug.

Weniger Betriebskosten

Die einfache Integrationsmöglichkeit von TAS ohne Umlenkung des Drehmoments über eine externe Übersetzung, wie z. B. Riemen oder Kette, spart einerseits Zeit und damit Kosten – andererseits arbeiten die Antriebe hoch effizient. Dadurch verringert sich der Energieverbrauch, und die Fahrzyklen bzw. Schichten können verlängert werden. Das System ermöglicht die einfache Parametrierung des Antriebs durch die Auswahl der Aktuatorvariante aus der im Regler hinterlegten Datenbank – das spart ebenfalls Zeit und vermeidet Fehler.

Sicherer Betrieb zu jeder Zeit

Das durchgängige Sicherheitskonzept, realisiert über einen zusätzlichen Drehzahlgeber und die Sicherheitsfunktion STO (Safe Torque Off) nach SIL3, ermöglichen rundum sichere Fahrzeugkonzepte in einem System: z. B. kann TAS zur einfachen Integration in das Sicherheitssystem mit einem zusätzlichen Geber zur Drehzahlüberwachung ausgestattet werden. Durch die integrierte Sicherheitsfunktion STO (Safe Torque Off) nach SIL3 kann sich das System im Notfall außerdem sicher abschalten.

Störungsfreie Produktivität

Die innovative Software MotionGUI erlaubt eine intuitive Bedienung mit Condition Monitoring, Fehlerspeicher, Service-Funktion und Parametrierung. Dies ermöglicht eine kontinuierliche Analyse von Prozessdaten und eine schnelle Fehlerdiagnose. Somit können die Stillstandzeiten durch die integrierte Funktion der Echtzeituhr mit Ereignis-Logging verkürzt werden, was für eine höhere Anlagenverfügbarkeit sorgt.

iTAS® Ideal für die Intralogistik unterschiedlichster Branchen.

Absolute Wirtschaftlichkeit, permanente Leistungssteigerung, kontinuierliche Kostensenkung, Sicherheit ohne Kompromisse – die Anforderungen an die innerbetriebliche Logistik sind bei Industrieunternehmen ebenso hoch wie im Handel oder bei öffentlichen Einrichtungen.

Für den reibungslosen Material- und Informationsfluss sind intelligente Gesamtlösungen gefragt, die das größtmögliche Maß an Individualisierung bei maximaler Standardisierung zulassen. iTAS® für Fahrerlose Transportsysteme verbindet standardisierte Leistungsdichte mit frei skalierbarer Leistungsparametrierung – für ein Maximum an Freiheit und Sicherheit in der Intralogistik.

Das iTAS®-Komplettsystem aus Aktuatorik, Elektronik und Branchenspezifizierung ist optimal für alle Unterfahr-FTF bzw. Schlepper, Huckepack-FTF, Montage-FTF und – aufgrund der kompakten Dimensionen der Systemkomponenten – insbesondere Mini-FTF.

Maschinenbau

- Weiter Geschwindigkeitsbereich
- Flacher Aufbau des Antriebssystems
- Hohe Stützlasten des Antriebssystems

Lagerlogistik

- Vielfältige Skalierbarkeit
- Dezentrale Intelligenz des Antriebssystems für Zusatzachsen (z. B. Greifer)
- Vereinfachte Integration des vorparametrierten Antriebssystems

Kliniklogistik

- Hohe Sicherheit
- Flache und platzsparende Lösung
- Geringer Energieverbrauch

Pharmaindustrie

- Höchste Sicherheit
- Plug- and Play-Integration
- Hohe Zuverlässigkeit
- Hohe Skalierbarkeit und Modularität

E-Commerce

- Kompaktes Antriebssystem zur einfachen Integration, auch in kleine Fahrzeuge
- Breiter Drehzahlbereich
- Flaches Design
- Hohe Energieeffizienz

Lebensmittelindustrie

- Abdeckung eines breiten Leistungsbereichs
- Hohe Effizienz des Gesamtsystems
- Hohe Zuverlässigkeit und Sicherheit

iTAS® – in der Praxis schon auf der Überholspur

Neue Fahrwege im Gesundheitswesen

"iTAS® ist platzsparend und bietet eine hohe Leistungsdichte. So kann unser Fahrzeug bis 2 m/s schnell fahren und Steigungen bis 7 Prozent überwinden."

Bernd Dalhoff, Geschäftsführer der 2-IT GmbH

Kunde:

2-IT GmbH aus Alling bei München

Branche:

FTS für das Gesundheitswesen und Anwendungen im industriellen Umfeld

Aufgabenstellung:

Entwicklung eines innovativen Unterfahr-FTF, das autonome Transportaufgaben in Einrichtungen des Gesundheitswesens übernimmt.

Lösung:

iTAS® mit TAS 025 im Ausstattungspaket performance – optimal zugeschnitten auf die spezifischen Anforderungen an Unterfahr-FTS im Krankenhausumfeld: flache, platzsparende Bauweise, ganzheitliches Sicherheitskonzept, geringer Energieverbrauch.

Beschreibung:

Der Einsatz in der Intralogistik von Krankenhäusern und Pflegeeinrichtungen ist herausfordernd, da die Fahrzeuge über Gebäudekonturen navigieren, Steigungen, Gefälle und Übergänge zu Liften und Automatiktüren meistern und auf ihren Wegen Krankenhausgänge gemeinsam mit dem Klinikpersonal nutzen. Da iTAS® u. a. als Differentialantrieb konzipiert ist, wird das Fahrzeug über eine Drehzahldifferenz der beiden Antriebe gelenkt und bei Bedarf sogar auf der Stelle gedreht. Die Energieeffizienz der Antriebe beträgt 93 %, nachladefreie Einsatzzyklen von mehr als 20 Stunden sind möglich.

Besonderheit:

Die besondere Herausforderung an den Antrieb des Fahrzeugs ist, dass Vierrad- Container zum Transport unterfahren werden. Bei einer Länge von 170 cm und einer Breite von knapp 60 cm ist das Fahrzeug lediglich 33 cm hoch. Zur Lastaufnahme ist ein Scherhubtisch für Lasten bis 600 kg integriert. Für Sicherheit und Navigationsunterstützung sorgen Miniatur-Laserscanner, Ultraschallsensoren und Bodendetektoren.

Vielfältige Skalierbarkeit. Dezentrale Intelligenz. Vereinfachte Integration.

Schwer in Ordnung, wenn es um Lagerlogistik geht

"Die Beratung aus einer Hand und die bei iTAS[®] ineinandergreifende Abstimmung der Antriebs- und Steuerungstechnik machen unsere Projekte planungssicher."

Joachim Walter, Geschäftsführung bei BeeWaTec GmbH

Kunde:

BeeWaTec GmbH aus Pfullingen bei Reutlingen

Branche:

Mini-FTS für die Fertigungs- und Lagerlogistik

Aufgabenstellung:

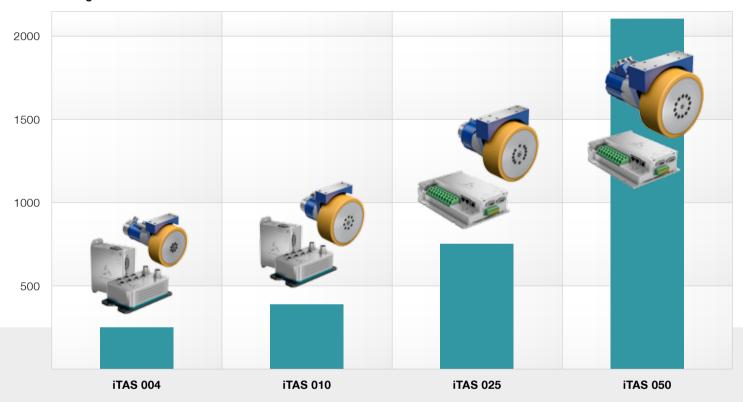
Realisierung einer maßgeschneiderten Antriebslösung zum Einsatz in einem modularen Mini-Fahrzeug zum Transport gestapelter Warenbehälter.

Lösung:

iTAS®: TAS 004 mit simco® drive IP20 perfect match: dynamic line Baugröße 40 mit simco® drive IP20

Beschreibung:

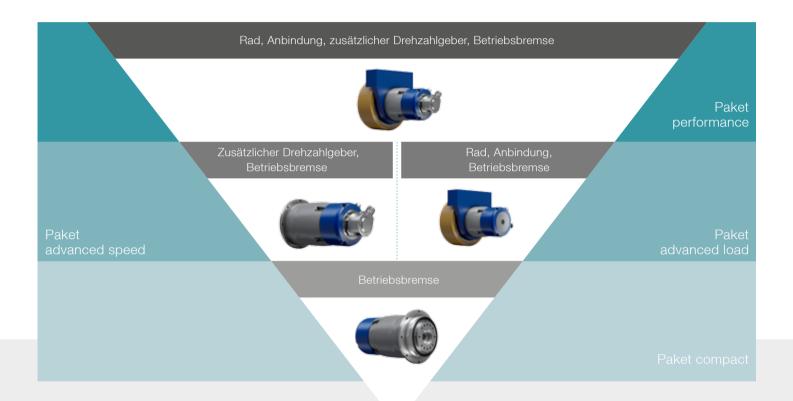
Statt Fahrzeugantriebe in Eigenregie auszulegen, setzt Beewatec bei der Baureihe Bee-Mini auf das Komplett-antriebssystem iTAS®. Die Motor- Getriebe-Einheiten sind zur optimalen Lagerauslastung direkt mit den VULKOLLAN® - Rädern verbunden. Pro Fahrzeugachse kommt ein iTAS® zum Einsatz. Die Lenkung des Fahrzeugs basiert auf der Drehzahldifferenz der beiden Antriebe. So wird die Last pro Antrieb halbiert und die Baugröße minimiert.


Besonderheit:

Außergewöhnliche Anforderung an das Gesamtantriebssystem: für das neu konzipierte Kompakt-Fahrzeug Bee-Mini den Transport von Gesamtgewichten bis 150 kg umzusetzen. Ermöglicht wird dies durch ein Klemmsystem, das mit einem dynamic line Aktuator in Kombination mit dem Servoregler simco® drive im Fahrzeug umgesetzt wurde. Gesteuert wird das Klemmen dezentral über den Servoregler. Zu dessen Anbindung an den Fahrzeugrechner dienen digitale Ein- und Ausgänge. Die aufwändige Umsetzung mit einer Feldbusschnittstelle entfällt.

iTAS®

Flexible, voll skalierbare Antriebsplattform


Dauerleistung in Watt

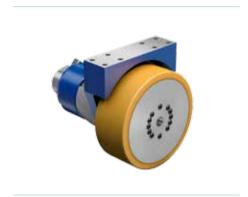
In den Servoaktuatoren des iTAS®-Systems verschmelzen Motor und schrägverzahntes, spielarmes Planetengetriebe zu kupplungslosen Antriebseinheiten, die sich durch ein hohes Drehmoment, Kompaktheit, hohe Kippmomente und einen weiten Drehzahlbereich auszeichnen. Die Servoregler, die als zentrale Variante in IP20 und als dezentrale Variante in IP65 zur Verfügung stehen, weisen messtechnisch eine sehr hochauflösende Stromregelung und eine hohe Drehmomentgenauigkeit im System auf. Das ist ideal für den Einsatz der iTAS®-Systemkomponenten in FTS, weil sich Drehmomente bei höchster Dynamik sehr genau regeln lassen.

Standardmäßig in die Antriebe integriert sind ein Temperatursensor, ein Resolver als robustes Feedbacksystem sowie eine Betriebsbremse. Über verschiedene Ausstattungspakete kann das Antriebssystem modular und applikationsspezifisch gestaltet werden.

4 Pakete zur modularen Gestaltung von Antriebssystemen.

Paket compact

Mit integrierter Betriebsbremse, die als Standardvariante für alle Ausstattungspakete erhältlich ist.


Paket advanced speed und advanced load

Ermöglicht die Anbindung eines zusätzlichen SICK-Drehzahlgebers oder eines angebauten Rades (VULKOLLAN® 93° Shore A) mit Anbindung zur optimierten Ausnutzung der Abtriebslagerung und Steigerung der Traglasten.

Paket performance

Ermöglicht die Vollausprägung aller Ausstattungsvarianten.

Weniger Platzbedarf. Mehr Flexibilität.

Durch ihre enorme Kompaktheit haben die Modelle von TAS 004 bis TAS 050 viele Pluspunkte: Geringer Platzbedarf ermöglicht mehr Struktur, mehr Übersichtlichkeit und mehr Flexibilität beim praktischen Einsatz in FTS.

Dank der über individuell-wählbare Ausstattungspakete möglichen Skalierbarkeit von TAS für unterschiedliche Anforderungen, ist diese Servoaktuatoren-Generation für viele Anwendungsfelder der ideale Leistungsfaktor im FTS – und damit der optimale modulare Baustein im flexiblen TAS-Gesamtsystem. Kombiniert mit dem geringen Trägheitsmoment des Aktuators, der hohen Verdrehsteifigkeit im Antriebsstrang

und einer beispiellosen Laufruhe, steht die TAS-Familie auch für ein entscheidendes "Plus" an Produktivität.

> Der ideale Leistungsfaktor im FTS.

Branchenspezifische Komponenten nach Wunsch.

Mit branchenspezifischen Komponenten können unterschiedliche Anforderungen an FTS sicher realisiert werden.

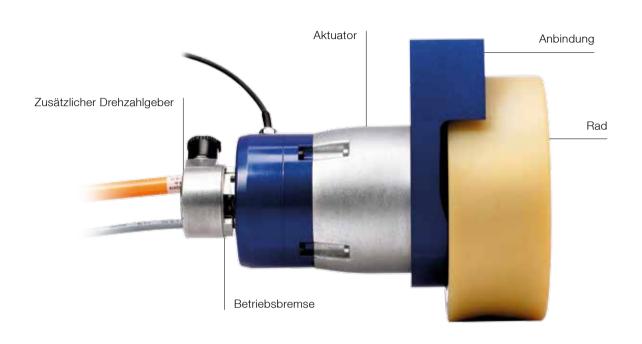
Zusätzlicher Drehzahlgeber

- Zusätzlicher Drehzahlgeber zur Drehzahlüberwachung
- Aufbau eines redundanten
 Drehzahlüberwachungssystem
 mit direkter Anbindung an die
 Sicherheitssteuerung des Fahrzeugs
- Vereinfachung durch integrierte Lösung

Aktuatoren

- Höchste Leistungsdichte
- Kompakte Bauform
- Integriertes Planetengetriebe
- Hohe Anzahl an Übersetzungsvarianten
- Hohe Präzision
- Integrierter Resolver

Anbindung

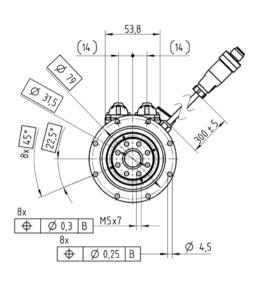

- Konfigurierbare und effiziente Schnittstelle zur Anbindung am Fahrzeugrahmen
- Hohe Stützlasten
- Integriertes Design
- Hohe Flexibilität

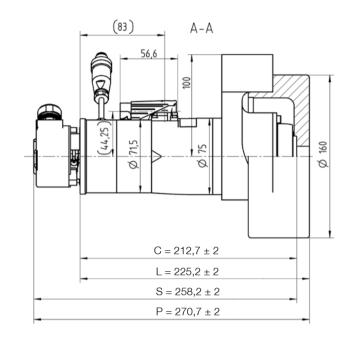
Betriebsbremse

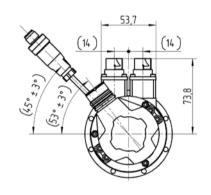
- Absicherung von Rampenfahrten und Bremsvorgängen im laufenden Betrieb
- Hohe Qualität und Zuverlässigkeit
- Applikationsspezifische Auslegung der Bremse
- Bremseneinstellung ab Werk

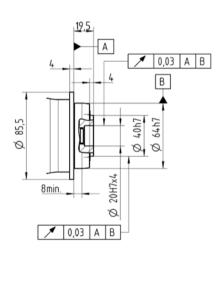
Rad

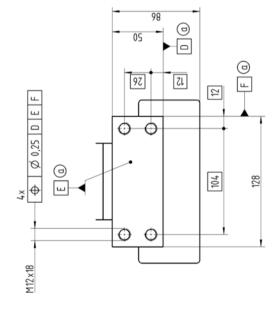
- Integriertes Rad im System
- Optimale Radanbindung zur Erzielung hoher Stützlasten
- Material: VULKOLLAN® 93° Shore A
- Bewährte Radtechnologie
- Unterschiedliche Raddurchmesser realisierbar

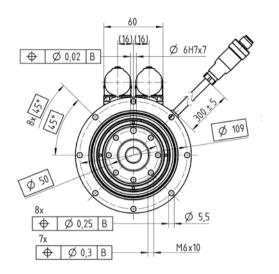

Baugruppe	TAS 004	TAS 010	TAS 025	TAS 050
Raddurchmesser	160 mm	200 mm	200 mm	250 mm
Getriebeübersetzung	16, 20, 28, 35, 50, 70, 100		16, 21, 31, 61, 91	
Stützlast je Antrieb (Paket advanced load/performance)	280 kg	485 kg	655 kg	2000 kg
Zwischenkreisspannung		24 oder	48 V DC	
Max. Vortriebskraft		380 bis	5200 N	
Dauervortriebskraft		100 bis	2000 N	
Nenngeschwindigkeit		Bis 2,6	6 m/s*	
Betriebsbremse mit Bremskraft	\	Wird speziell für Ihr An	triebssystem ausgeleg	t
Auflösung zusätzl. Inkremental-Drehzahlgeber		1024 und	d 250 ppr	

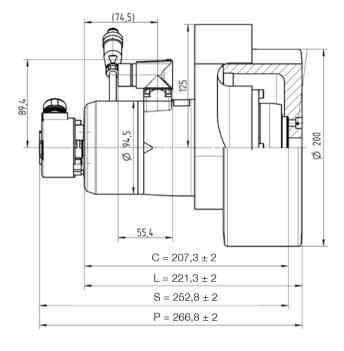

^{*} spezifische Auslegung notwendig

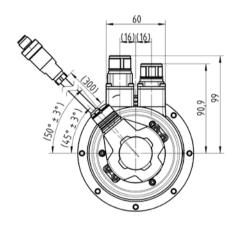

Baugröße 004 – 24 V / 48 V

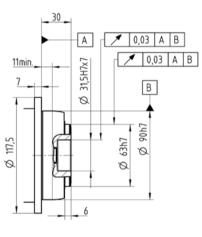

Übersetzung	i		016 020 028					035 050		07	070		00			
Motorgröße									53	ВВ						
Zwischenkreisspannung	U _D	V DC	24	48	24	48	24	48	24	48	24	48	24	48	24	48
Max. Beschleunigungs- moment am Abtrieb (max. 1000 Zyklen pro Stunde)	T _{2B}	Nm	2	9	36	,2	51	51,8		,0	55	5,0	55,0		35,0	
Stillstandsmoment am Abtrieb	T ₂₀	Nm	7,	9	9,	9	15	5,0	19	,5	28	3,3	40,0		18,0	
Bremsmoment am Abtrieb, 100 °C	T _{2BR}	Nm	3	2	40		5	6	7	0	5	0	Ausle erford		Ausle	egung Ierlich
Max. Drehzahl	n _{2max}	min ⁻¹	280,8	375,0	224,7	300	160,5	214,3	128,4	171,4	89,9	120	64,2	85,7	44,9	60,0
Max. Beschleunigungs- strom des Motors (statisch)	maxstst	A _{eff}	31	,5	31,5		31	,5	26	,7	19),0	13	,7	6	,7
Stillstandsstrom des Motors	I _o	A _{eff}	10	,5	10	,5	10),5	10	,5	10),5	10	,3	4	,0
Verdrehspiel	j _t	arcmin							≤	4						
Max. Axialkraft	F _{amax}	N							16	30						
Stützlast je Antrieb (Paket advanced load/performance)		kg							28	30						
Max. Kippmoment* (Abstand des Drehpunktes zum Abtriebsflansch 57,6 mm)	M _{kmax}	Nm							11	10						
Gewicht (compact line)	m ₁	kg							2,	9						
Laufgeräusch (gemessen bei 3000 Upm Motordrehzahl)	L _{PA}	dB(A)							≤ (58						
Max. zulässige Gehäusetemperatur	ϑ_{\max}	°C							9	0						
Umgebungstemperatur	$\vartheta_{_{\mathrm{U}}}$	°C							0 bis	+40						
Schutzart									IP	65						
Einbaulage									В	5						
Schmierung							sy	nthetisch	es Öl, leb	ensdaue	rgeschmie	ert				
Isolierstoffklasse									F	:						
Lackierung							Stand	dardlackie	erung blau	ı, unlacki	ert auf An	frage				

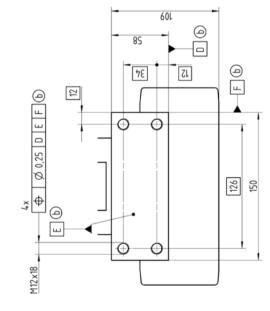

^{*}bezogen auf die Ausstattungspakete advanced speed und compact. Beim Einsatz eines spezifischen Rades kann das Kippmoment entsprechend der Beschreibung auf S.50 berechnet werden.

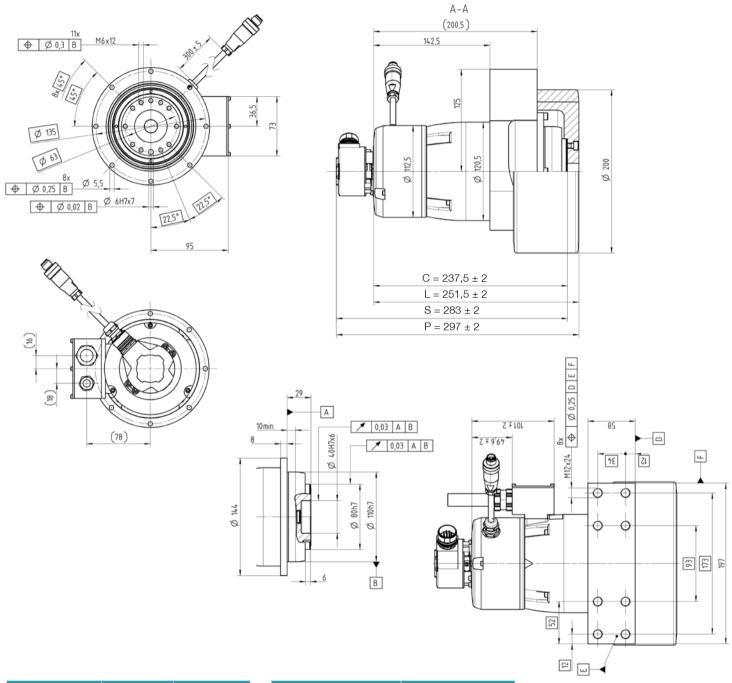

Optionsvariante	Abkürzung	Länge in mm
compact	С	212,7
advanced speed	S	258,2
advanced load	L	225,2
performance	Р	270,7


Elektrischer Anschluss	Anschlussart
Motorphasen	itec Serie 915
Motorfeedback	itec Serie 915
Betriebsbremse	M12 Stecker 4-polig
Drehzahlgeber	Gerätestecker M23x1


Baugröße 010 – 24 V / 48 V


Übersetzung	i		0.	16	02	21	0:	31	0	61	09	91
Motorgröße							64	₽B				
Zwischenkreisspannung	U _D	V DC	24	48	24	48	24	48	24	48	24	48
Max. Beschleunigungsmoment am Abtrieb (max. 1000 Zyklen pro Stunde)	T _{2B}	Nm	43,0	43,0	57,1	57,1	84,9	84,9	80,0	80,0	80,0	80,0
Stillstandsmoment am Abtrieb	T _{2nenn}	Nm	10,7	13,4	14,7	18,3	22,3	27,6	35,0	35,0	35,0	35,0
Bremsmoment am Abtrieb, 100 °C	T _{2BR}	Nm	Nm 43,0 43,0 57,1 57,1 84,9 84,9 80,0 80,0 Nm 10,7 13,4 14,7 18,3 22,3 27,6 35,0 35,0 Nm 32 42 62 61 min¹¹ 338,3 375,0 257,7 285,7 174,6 193,5 88,7 98,4 Aerf 60,0 43,8 60,0 43,8 60,0 43,8 29,3 18,5 Aerf 20,0 14,6 20,0 14,6 20,0 14,6 14,9 9,3 remin ≤ 3 N 2150 kg 485 Nm 270 kg 5,7				egung Ierlich					
Max. Drehzahl	n _{2max}	min ⁻¹	338,3	375,0	257,7	285,7	174,6	193,5	88,7	98,4	59,5	65,9
Max. Beschleunigungsstrom des Motors (statisch)	maxstst	A _{eff}	60,0	43,8	60,0	43,8	60,0	43,8	29,3	18,5	20,6	12,9
Stillstandsstrom des Motors	I _o	A _{eff}	20,0	14,6	20,0	14,6	20,0	14,6	14,9	9,3	11,1	6,9
Verdrehspiel	j _t	arcmin						3				
Max. Axialkraft	F _{amax}	N					21	50				
Stützlast je Antrieb (Paket advanced load/performance)		kg					48	35				
Max. Kippmoment* (Abstand des Drehpunktes zum Abtriebsflansch 82,7 mm)	M _{kmax}	Nm					27	70				
Gewicht (compact line)	m ₁	kg					5	,7				
Laufgeräusch (gemessen bei 3000 Upm Motordrehzahl)	L _{PA}	dB(A)					≤	62				
Max. zulässige Gehäusetemperatur	ϑ_{max}	°C					g	0				
Umgebungstemperatur	ϑ _∪	°C					0 bis	s +40				
Schutzart							IP	65				
Einbaulage							Е	35				
Schmierung						synthetis	ches Öl, leb	ensdauerge	eschmiert			
Isolierstoffklasse							ı	=				
Lackierung						Standardlac	kierung bla	u, unlackiert	auf Anfrag	e		


^{*}bezogen auf die Ausstattungspakete advanced speed und compact. Beim Einsatz eines spezifischen Rades kann das Kippmoment entsprechend der Beschreibung auf S.50 berechnet werden.

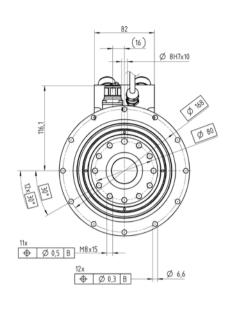

Optionsvariante	Abkürzung	Länge in mm
compact	С	207,3
advanced speed	S	252,8
advanced load	L	221,3
performance	Р	266,8

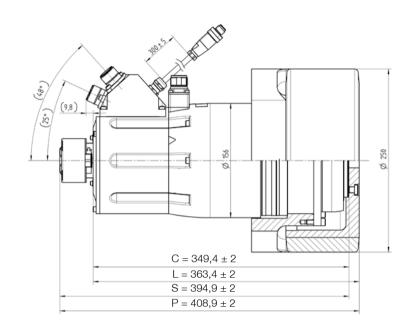
Elektrischer Anschluss	Anschlussart
Motorphasen	speedtec Serie 923 (Einbaudose M23x1)
Motorfeedback	speedtec Serie 923 (Einbaudose M23x1)
Betriebsbremse	M12 Stecker 4-polig
Drehzahlgeber	Gerätestecker M23x1

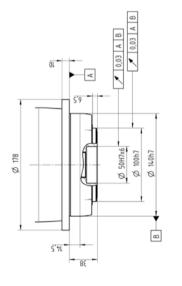
Baugröße 025 – 24 V / 48 V

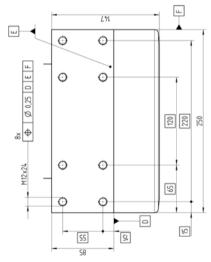
Übersetzung	i		0-	16	0:	21	0:	31	06	61	0:	91
Motorgröße							94	4C				
Zwischenkreisspannung	U _D	V DC	24	48	24	48	24	48	24	48	24	48
Max. Beschleunigungsmoment am Abtrieb (max. 1000 Zyklen pro Stunde)	T _{2B}	Nm	74,9	113,6	99,1	149,9	148,2	223,2	250,0	250,0	250,0	250,0
Stillstandsmoment am Abtrieb	T _{2nenn}	Nm	15,7	30,7	21,4	41,2	33,5	62,6	87,8	100,0	100,0	100,0
Bremsmoment am Abtrieb, 100 °C	T _{2BR}	Nm	8	60	10	05	15	55	15	2,5	227,5	
Max. Drehzahl	n _{2max}	min ⁻¹	261,6	348,8	199,3	265,7	135,0	180,0	68,6	91,5	46,0	61,3
Max. Beschleunigungsstrom des Motors (statisch)	 maxstst	A _{eff}	84,0	84,0	84,0	84,0	84,0	84,0	68,2	46,6	47,5	31,8
Stillstandsstrom des Motors	I _o	A _{eff}	28,0	28,0	28,0	28,0	28,0	28,0	28,0	20,6	22,6	15,1
Verdrehspiel	j _t	arcmin					<u></u> ≤	3				
Max. Axialkraft	F _{amax}	N					41	50				
Stützlast je Antrieb (Paket advanced load/performance)		kg					6	55				
Max. Kippmoment* (Abstand des Drehpunktes zum Abtriebsflansch 94,5 mm)	M _{kmax}	Nm					44	40				
Gewicht (compact line)	m ₁	kg					10	0,4				
Laufgeräusch (gemessen bei 3000 Upm Motordrehzahl)	L _{PA}	dB(A)					≤	64				
Max. zulässige Gehäusetemperatur	ϑ_{max}	°C					g	00				
Umgebungstemperatur	ϑ _u	°C					0 bis	s +40				
Schutzart							IP	65				
Einbaulage							Е	35				
Schmierung						synthetis	ches Öl, leb	pensdauerge	eschmiert			
Isolierstoffklasse							ı	F				
Lackierung					,	Standardlac	kierung bla	u, unlackier	auf Anfrage	е		

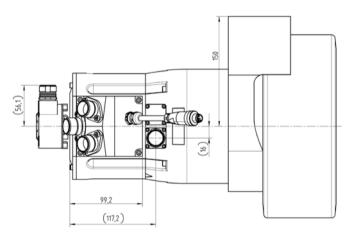
^{*}bezogen auf die Ausstattungspakete advanced speed und compact. Beim Einsatz eines spezifischen Rades kann das Kippmoment entsprechend der Beschreibung auf S.50 berechnet werden.


Optionsvariante	Abkürzung	Länge in mm
compact	С	237,5
advanced speed	S	283
advanced load	L	251,5
performance	Р	297


Elektrischer Anschluss	Anschlussart
Motorphasen	Offene Kabelenden
Motorfeedback	Sub D-Stecker
Betriebsbremse	M12 Stecker 4-polig
Drehzahlgeber	Gerätestecker M23x1


Baugröße 050 – 24 V / 48 V


Übersetzung	i		016 021				00	31	061		091		
Motorgröße							13	0D					
Zwischenkreisspannung	U _D	V DC	24	48	24	48	24	48	24	48	24	48	
Max. Beschleunigungsmoment am Abtrieb (max. 1000 Zyklen pro Stunde)	T _{2B}	Nm	36	5,9	48	2,8	65	0,0	500	0,0	500,0		
Stillstandsmoment am Abtrieb	T _{2nenn}	Nm	124,3 165,7				24	9,2	220	0,0	22	220,0	
Bremsmoment am Abtrieb, 100 °C	T _{2BR}	Nm	16	160 210		3-	10	30)5	4	55		
Max. Drehzahl	n _{2max}	min ⁻¹	188	312,5	143,2	238,1	97,0	161,3	49,3	82,0	33,1	54,9	
Max. Beschleunigungsstrom des Motors (statisch)	 maxstst	A _{eff}	31:	2,0	31	2,0	28	2,1	95	i,9	66	5,4	
Stillstandsstrom des Motors	I _o	A _{eff}	10	4,0	10	4,0	10-	4,0	46	5,7	33,4		
Verdrehspiel	j _t	arcmin					<u>≤</u>	3					
Max. Axialkraft	F _{amax}	N					61	30					
Stützlast je Antrieb (Paket advanced load/performance)		kg					20	00					
Max. Kippmoment* (Abstand des Drehpunktes zum Abtriebsflansch 81,2 mm)	M _{kmax}	Nm					13	35					
Gewicht (compact line)	m ₁	kg					24	1,0					
Laufgeräusch (gemessen bei 3000 Upm Motordrehzahl)	L _{PA}	dB(A)					≤ (66					
Max. zulässige Gehäusetemperatur	ϑ_{max}	°C					9	0					
Umgebungstemperatur	$\vartheta_{_{\mathrm{U}}}$	°C					0 bis	s +40					
Schutzart							IP	65					
Einbaulage							В	15					
Schmierung						synthetis	sches Öl, leb	ensdauerge	eschmiert				
Isolierstoffklasse							ſ	=					
Lackierung					;	Standardlad	kierung blau	u, unlackiert	auf Anfrage	•			


^{*}bezogen auf die Ausstattungspakete advanced speed und compact. Beim Einsatz eines spezifischen Rades kann das Kippmoment entsprechend der Beschreibung auf S.50 berechnet werden.

Optionsvariante	Abkürzung	Länge in mm
compact	С	349,4
advanced speed	S	394,9
advanced load	L	363,9
performance	Р	408,9

Elektrischer Anschluss	Anschlussart
Motorphasen	singletec Serie 923 (Einbaudose M23x1)
Motorfeedback	speedtec Serie 923 (Einbaudose M23x1)
Betriebsbremse	M12 Stecker 4-polig
Drehzahlgeber	Gerätestecker M23x1

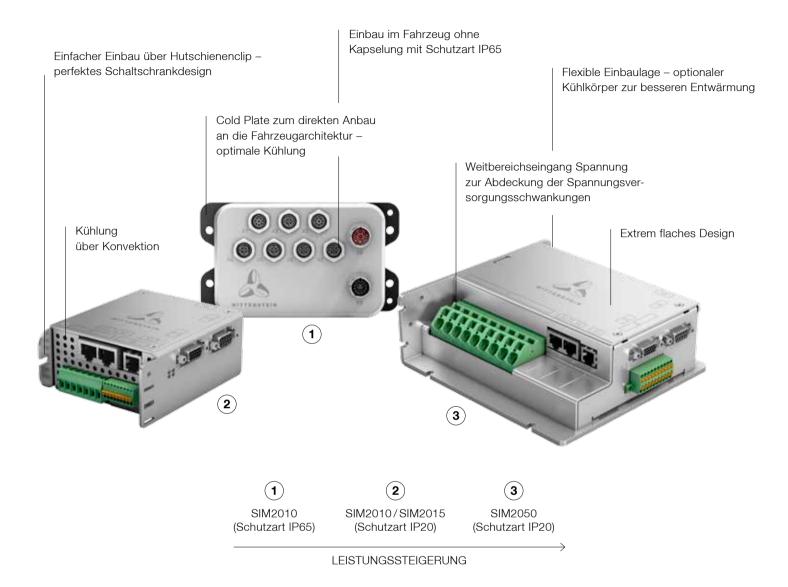
simco[®] drive Weniger Aufwand. Mehr Flexibilität.

Vervollständigt wird das TAS Antriebssystem durch die Servoreglerbaureihe simco[®] drive.

Es kann zwischen verschiedenen Leistungsvarianten und Ausführungen gewählt werden: Zur Verfügung stehen die Regler mit einer Schutzart von IP20 in den Leistungsklassen 10, 15 und 50 A und IP65 in der Leistungsklasse 10 A. Die kompakte Bauweise ermöglicht den Einsatz auf engem Raum und ist für FTS ideal.

Vorteile im Überblick

- Flexible und vielseitige Schnittstellen
- Kompaktes Design
- Vereinfachter Einbau ins Fahrzeug
- Minimierter Verkabelungsaufwand
- Sichere galvanische Trennung von Logik und Leistung
- Integrierte Sicherheitsfunktionen STO und SS1* nach SIL 3 (* in Verbindung mit der Fahrzeugsteuerung)


simco® drive besticht durch vielfältige Hardwarefeatures, die perfekt auf die Anforderungen bei der Realisierung eines fahrerlosen Transportsystems zugeschnitten sind. Aber auch die Softwarefunktionen des simco® drive bieten hohen Mehrwert.

Softstart-Funktion

- Begrenzung der Stromstärke beim Einschalten des Gerätes
- Schutz vor unzulässigen hohen Strömen
- Schutz für externe Komponenten (z. B. Schalter)
- Einsparung von Aufwand bei der Realisierung des Fahrzeugs
- Einsparung von Komponenten

Rollierende Softwareupdates

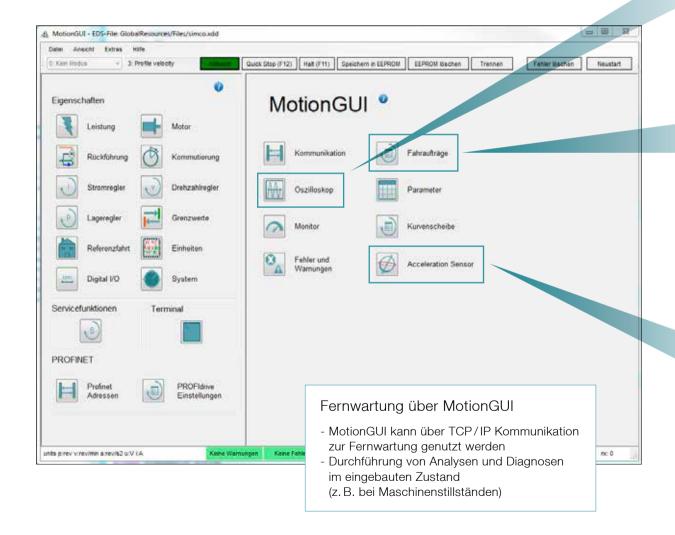
- Integration neuer Softwarefeatures mit garantierter Verfügbarkeit vorhandener Softwarestände
- Nutzung neuer Features
- Update der Regler über eigenständige Downloaddatei

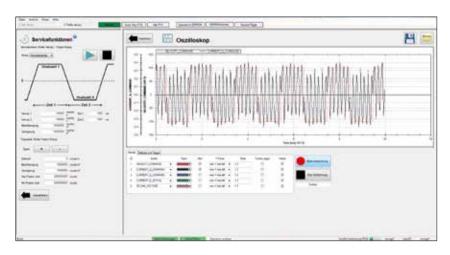
Encoderemulation

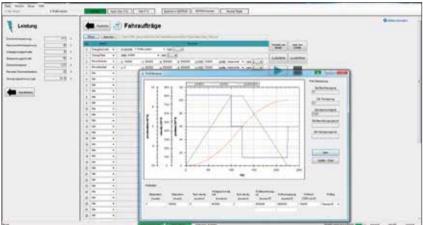
- Erzeugung von differentiellen Inkrementalsignalen aus Motorencoder
- Ausgabe des Signals am Encodersteckverbinder zur Weitergabe an die Sicherheits-SPS
- Aufbau eines redundanten Geschwindigkeitsüberwachungssystems
- Spart Aufwand
- Einsparung eines zusätzlichen Gebers am Antrieb/Abtrieb
- Einfache Realisierung der Sicherheitsfunktionen

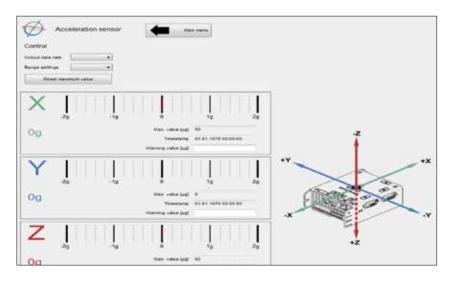
Integriertes PROFIdrive Antriebsprofil

- Vollständig integriertes Antriebsprofil zur Anbindung an SIEMENS Steuerungen und zur vollständigen Nutzung vorhandener Technologieobjekte
- Einfache Integration in SIEMENS Steuerungssoftware
- Einfache Konfiguration des Antriebssystems über Installation der GSDML-Datei
- Fehlerfreie Einbindung


Webserver


- Zustandsanalyse und Überwachung des Antriebssystems im vorhandenen Netzwerk
- Einfaches und schnelles Condition Monitoring im eingebauten Zustand möglich
- Durchführung von Analysen im Netzwerk
- Keine Verkabelung notwendig


simco® drive Software MotionGUI


Intuitive Führung bei Inbetriebnahme und im Betrieb

Die grafische Benutzerschnittstelle MotionGUI führt den Anwender intuitiv während der Inbetriebname und im Betrieb des Antriebssystems. Über verschiedene Funktionen können Diagnosen, Optimierungen und die Parametrierung des Antriebes durchgeführt werden. Diagnose-Routinen und das Ereignislogging werden mittels Echtzeituhr realisiert. Dadurch können ein Condition Monitoring sowie Integrationsund Wartungsarbeiten effizient und zeitsparend realisiert werden – jederzeit sichtbar in der Software MotionGUI.

[SCOPE]

Diagnosefunktionen

- SCOPE Funktion

Analyse von Applikationen und Bewegungsabläufen über die SCOPE Funktion – auch im Offline Betrieb möglich

- Errors and Warnings

Logging der Fehler und Warnungen zur schnellen Problembehandlung
– Speicherung der Fehler in der Fehlerhistorie

[Motion Tasks]

Fahraufträge

- erweiterte Fahrsatztabelle mit "dezentraler Intelligenz" zur individuellen Modifikation und flexiblen Programmierung der Applikation
- Einfache Erstellung von Fahraufträgen mit reduziertem Programmieraufwand für den Fahrzeugbauer
- auch komplexe Einzelachsbewegungen, wie z. B. Greifvorgänge auf dem Fahrzeug oder die Ansteuerung von Hubmodulen, können dezentral generiert und ausgeführt werden
- bei mehreren synchronisierten Achsen: Bewegungen können gleichzeitig über ein Synchronisierungssignal der Steuerung gestartet werden
- Realisierung von Stand-Alone Lösungen durch die Einsparung der Steuerung

[Acceleration Sensor]


Beschleunigungssensor on Board

- Analyse von Beschleunigungswerten in x,y,z Richtung
- Ausgabe von Warnungen und Fehlern bei Überschreitung der definierten maximalen Beschleunigungswerten
- Analyse von Crashs und Bodenbeschaffenheit der Anlage

simco® drive Webserver

Via Internet auf den Servoregler zugreifen

Durch den im simco® drive hinterlegten Webserver ist es möglich, im mobilen Betrieb per Internet auf den eingebauten Servoregler zuzugreifen. Dies erlaubt es, jederzeit die Auslastung des Systems zu überprüfen und auf Fehler oder Warnmeldungen gezielt und zeitnah zu reagieren. Die intelligente Bereitstellung von Daten im Webserver erleichtert zudem die Inbetriebnahme und ermöglicht im Betriebseinsatz der Fahrzeuge ein permanentes Condition Monitoring, das entscheidend zu einer höchstmöglichen Verfügbarkeit des gesamten FTS-Anlage beiträgt.

- Bereitstellung von Informationen zum Gesamtsystem

* Der Webserver ist aktuell für die PROFINET und EtherNet/IP-Variante des simco® drive erhältlich.

Monitor

Funktion:

- Analyse der Antriebsparameter im laufenden Betrieb, z.B. Temperatur, Drehmoment, Drehzahl
- Bestimmung der Auslastung von Motor und Servoregler
- Ausgabe von Diagrammen zur Analyse der Werte über die Zeit
- Definition von Betriebs-/Auslastungsbereichen
- Analyse der Beschleunigungswerte (Beschleunigungssensor)

Ihr Nutzen:

- Einleitung von Maßnahmen zur Optimierung des Systems
- Einfache Durchführung von Condition Monitoring
- Analyse von Downsizing Potenzial
- Optimierung des Betriebsprozesses

Diagnose

Funktionen:

- Ausgabe von Fehlern und Warnungen
- Quittieren von Fehlern über den Webserver
- Darstellung der Fehlerhistorie

Ihr Nutzen:

- Schnelle und einfache Analyse
- Analyse von Fehlern und Warnungen im laufenden Betrieb
- Einleitung von Maßnahmen zur Fehlerbehebung
- Lösungsfindung über automatisierte Mailing-Funktion der Fehlercodes an die Support-Hotline von WITTENSTEIN

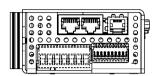
Device Information

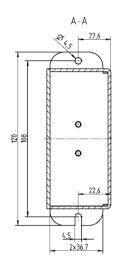
Funktionen:

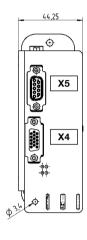
- Angabe der Geräteinformationen, wie Seriennumer und Bestellschlüssel
- Analyse des Gesamtantriebssystems, bestehend aus Motor und Elektronik
- Angabe des verwendeten Firmwarestands und Version der Motordatenbank
- Ausgabe der Betriebsstunden

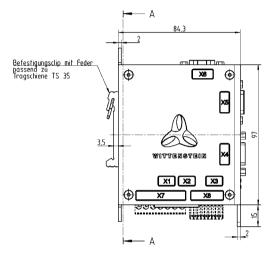
Ihr Nutzen:

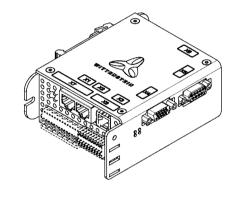
- optimale Bereitstellung der Geräteinformationen
- Schnelle und einfache Analyse

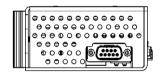

simco® drive

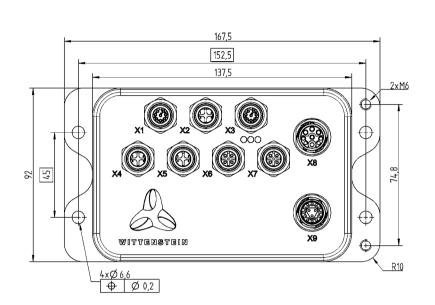

Reglervariante			SIM2002D-C	SIM2002D-F	SIM2010D-C	SIM2010D-F	SIM2015-C	SIM2050D-C
Nennausgangsstrom	I _N	Α	2,5	2,5	10	10	15	42
Versorgungsspannung (Leistung)	U _{DC}	V DC	+16 56 (ungeregelt)	+16 56 (ungeregelt)	+16 56 (ungeregelt)	+16 56 (ungeregelt)	+16 +56 (ungeregelt)	+12 +60 (ungeregelt)
Versorgungsspannung (Logik)	U _{log}	V DC	+24 (+/- 10 %)	+24 (+/- 10 %)	+24 (+/- 10 %)	+24 (+/- 10 %)	+24 (+/- 10 %)	+12 +60 (ungeregelt)
Spitzenstrom	I _{max}	A _{eff}	5 (für 5s)	5 (für 5s)	20 (für 5s)	20 (für 5s)	30 (für 5s)	84
Nennleistung	P _N	W	125	125	500	500	750	2500
Spitzenleistung	P _{max}	W	250	250	1000	1000	1500	5000
Schaltfrequenz	f _{PWM}	kHz			8	. 32		
Auflösung der Stromregelung		Bit	14	14	14	14	14	14
Kommunikation			CANopen nach DS402 EtherCAT mit CoE PROFINET RT/IRT TCP/IP* RS232 EtherNet/IP	CANopen nach DS402 EtherCAT mit CoE PROFINET RT/IRT** TCP/IP* RS232 EtherNet/IP**	CANopen nach DS402 EtherCAT mit CoE PROFINET RT/IRT TCP/IP* RS232 EtherNet/IP	CANopen nach DS402 EtherCAT mit CoE PROFINET RT/IRT** TCP/IP* RS232 EtherNet/IP**	CANopen nach DS402 EtherCAT mit CoE PROFINET RT/IRT TCP/IP* RS232 EtherNet/IP	CANopen nach DS402 EtherCAT mit CoE PROFINET RT/IRT TCP/IP* RS232 EtherNet/IP
Antriebsfunktion nach DS 402 für Kommunikation CANopen/EtherCAT			- Profile position mode - Homing mode - Profile velocity mode - Profile torque mode - Cyclic synchronous position mode - Cyclic synchronous velocity mode					
Unterstützte PROFIdrive Applikationsklassen für Kommunikation PROFINET			- Applikationsklasse 1 (PROFINET RT) - Applikationsklasse 3 (PROFINET RT) - Applikationsklasse 4 (PROFINET IRT)					
Geberschnittstellen			- BISS C - EnDat 2.2 - Hallsensoren - Resolver					
Sicherheitsfunktion			STO (Safe Torque off) STO (Safe Torque off) nach SIL3/PLe zertifiziert zertifizierung in Vorbereitung)					
Technologie-Funktionen			Kurvenscheibe, Motion Tasks					
Schutzart			IP20	IP65	IP20	IP65	IP20	IP20
Digitale Eingänge			4, optoentkoppelt, Funktion frei parametrierbar					
Digitale Ausgänge			2, optoentkoppelt, Funktion frei parametrierbar					
Ereignislogging mit Echtzeituhr			/					
Bremsenansteuerung			/ /					
Anschluss eines externen Ballastwiderstandes			/					
Fahrprogramme mit SPS-Funktionen			/ /					
Betriebstemperaturbereich	$\vartheta_{_{\! A}}$	°C	0 45					
Gewicht	m	kg	0,3	0,85	0,3	0,85	0,3	1,03

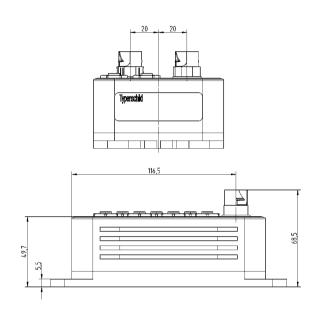

verfügbar nur bei PROFINET-Ausführung und EtherNet/IP
 in Vorbereitung




SIM2002D-C, SIM2010D-C und SIM2015D-C

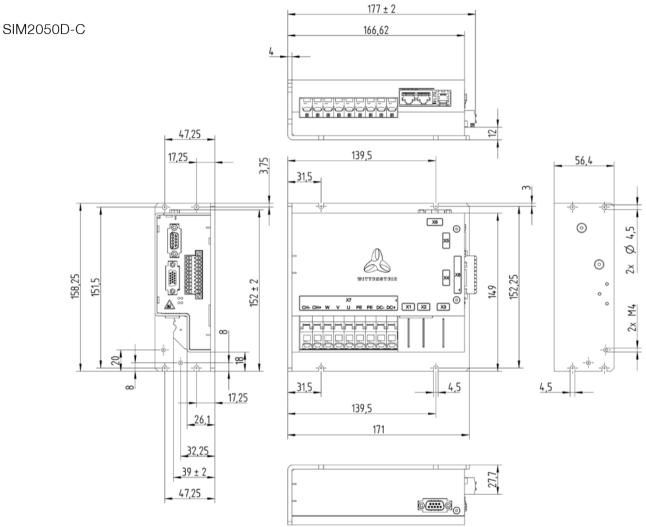


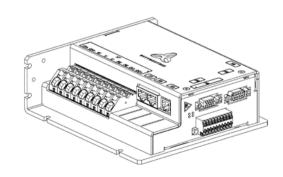



Steckeranschlüsse

Beschriftung	Art der Schnittstelle	Steckeranschluss
X1	Feldbusschnittstelle Input	RJ45 Buchse
X2	Feldbusschnittstelle Output	RJ45 Buchse
Х3	Diagnoseschnittstelle RS232	RJ12 Buchse
X4	Encoderschnittstelle	D-Sub 15-polig female
X5	Resolverschnittstelle	D-Sub 9-polig female
X6	Digitaleingänge/-ausgänge	D-Sub 9-polig male
X7	Motoranschluss	Phoenix_MSTBA_2,5_HC/7-G
X8	Spannungsversorgung	Phoenix_MC_0,5/9-G-2,5

simco® drive


SIM2002D-F und SIM2010D-F


Steckeranschlüsse

Beschriftung	Art der Schnittstelle	Steckeranschluss
X1	Resolverschnittstelle	M12 8-polig female A-codiert
X2	Digitaleingänge	M12 5-polig female B-codiert
Х3	Encoderschnittstelle	M12 8-polig female A-codiert
X4	Digitalausgänge	M12 5-polig female B-codiert
X5	Diagnoseschnittstelle RS 232	M12 4-polig female A-codiert
X6	Feldbusschnittstelle Input	Version CAN: M12 5-polig female A-codiert Version EtherCat: M12 4-polig female D-codiert
X7	Feldbusschnittstelle Output	Version CANopen: M12 5-polig female A-codiert Version EtherCat: M12 4-polig female D-codiert
X8	Spannungsversorgung	Intercontec itec 915 9-polig male
Х9	Motoranschluss	Intercontec itec 915 15-polig female

Steckeranschlüsse

Beschriftung	Art der Schnittstelle	Steckeranschluss	
X1	Feldbusschnittstelle Input	RJ45 Buchse	
X2	Feldbusschnittstelle Output	RJ45 Buchse	
Х3	Diagnoseschnittstelle RS232	RJ12 Buchse	
X4	Encoderschnittstelle	D-Sub 15-polig female	
X5	Resolverschnittstelle	D-Sub 9-polig female	
X6	Digitaleingänge/-ausgänge	D-Sub 9-polig male	
X7	Motoranschluss	Phoenix Contact ZFKDS 10-10,00	
X8	Spannungsversorgung	Phoenix Contact MC 1,5/10-GF-3,5	

Kühlkörper als Zubehör erhältlich.

Kabel

Vorkonfektionierte Längen

Für die schnelle Inbetriebnahme des Antriebssystems stehen Ihnen folgende vorkonfektionierte Kabel zur Verfügung:

- Kabel für die Spannungsversorgung des simco® drive
- Feldbuskabel für CANopen, EtherCAT, PROFINET und EtherNet/IP Kommunikation
- Kabel zur Inbetriebnahme
- Motorverbindungsleitungen für die Anbindung an den Servoregler.

Weitere Kabellängen können auf Anfrage geliefert werden.

Technische Details der Motorverbindungsleitungen:

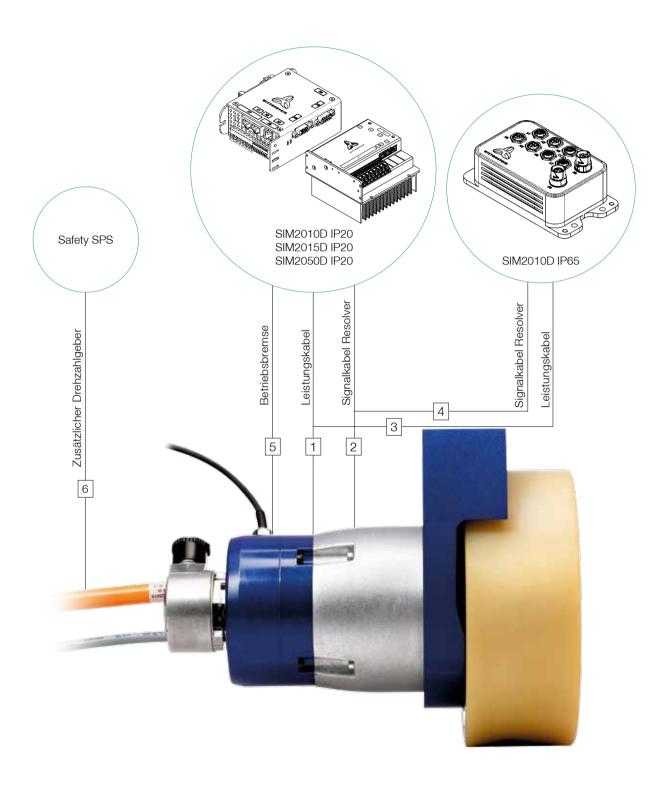
- Material: PUR

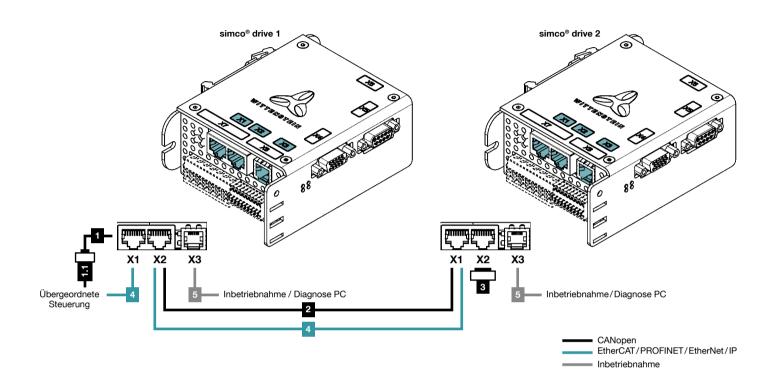
- Temperaturbereich

- schleppkettentauglich

-30 bis 80 °C

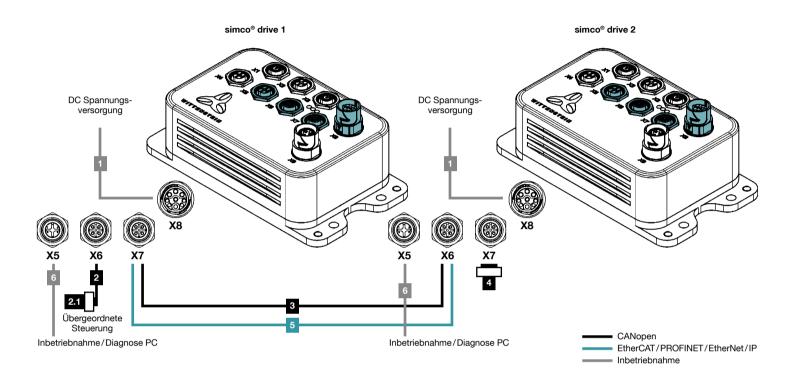
- EMV-Schirmung


Weitere technische Daten erhalten Sie auf Anfrage.


Motorverbindungsleitungen

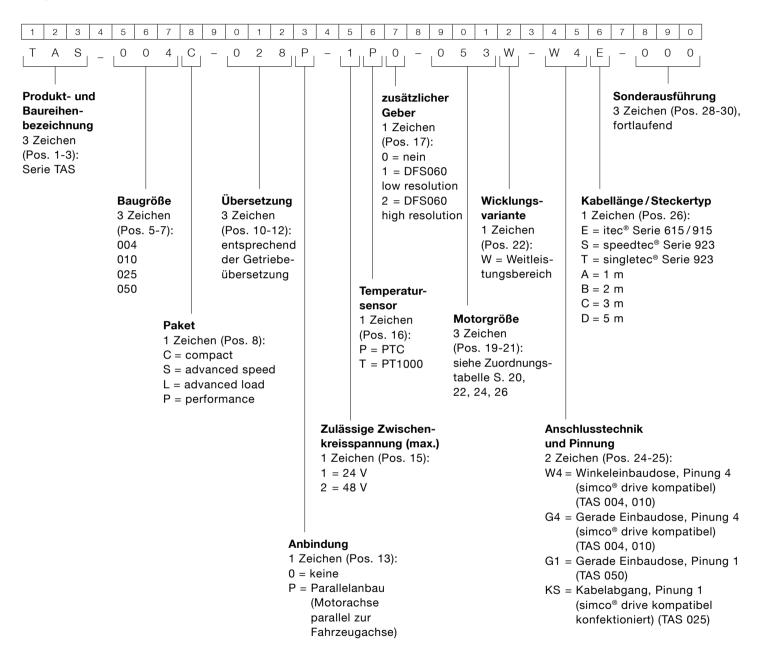
NI		Kabalast	B	Schnittstellen			
Nr.	Regler	Kabelart	Bezeichnung	Motor	Regler	Vorzugslängen	
TAS	004						
1	SIM2010D/	Leistungskabel	CAB-POW-U-SIM2_C-D0150-E-LXXXX		Stecker Phoenix Contact		
2	SIM2015 IP20	Signalkabel Resolver	CAB-SIG-R-SIM_C-D0000-E-LXXXX		Sub-D-Stecker 9-polig	1 m; 2 m; 3 m; 5 m	
3		Leistungskabel	CAB-POW-U-SIM2_F-D0150-E-LXXXX	itec Serie 915	itec Serie 915		
4	SIM2010D IP65	Signalkabel Resolver	CAB-SIG-R-SIM_F-D0000-E-LXXXX		M12 Stecker 8-polig	1	
5	-	Betriebsbremse*	im Aktuator AC enthalten	direkter Kabelabgang	M12 Stecker 4-polig	0,4 m	
6	_	Zusätzlicher Drehzahlgeber	Kabel nicht im Leistungsa	ngebot; auf Anfrage kann b	ei der Beschaffung unterstützt we	erden	
TAS	010						
1	SIM2010D/ SIM2015D IP20	Leistungskabel	CAB-POW-U-SIM2_C-D0150-S-LXXXX		Stecker Phoenix Contact		
1	SIM2050D IP20	Leistungskabel	CAB-POW-U-SIM2_C-D0250-S-LXXXX		offene Kabelenden mit ver- längerten Leitungen für den Temperatursensor	1 m; 2 m; 3 m; 5 m	
2	SIM2010D/ SIM2015D/ SIM2050D IP20	Signalkabel Resolver	CAB-SIG-R-SIM_C-D0000-S-LXXXX	speedtec Serie 923	Sub-D-Stecker 9-polig		
3	011400400 1005	Leistungskabel	CAB-POW-U-SIM2_F-D0150-S-LXXXX		itec Serie 915		
4	SIM2010D IP65	Signalkabel Resolver	CAB-SIG-R-SIM_F-D0000-S-LXXXX		M12 Stecker 8-polig		
5	-	Betriebsbremse*	im Aktuator AC enthalten	direkter Kabelabgang	M12 Stecker 4-polig	0,4 m	
6	-	Zusätzlicher Drehzahlgeber	Kabel nicht im Leistungsangebot; auf Anfrage kann bei der Beschaffung unterstützt w		rden		
TAS	025						
1	SIM2050D IP20	Leistungskabel			offene Kabelenden	s. Bestellschlüssel	
2	SIM2050D IP20	Signalkabel Resolver	im Aktuator AC enthalten	direkter Kabelabgang	Sub-D-Stecker 9-polig	Aktuator	
5	-	Betriebsbremse*			M12 Stecker 4-polig	0,4 m	
6	-	Zusätzlicher Drehzahlgeber	Kabel nicht im Leistungsangebot; auf Anfrage kann bei der Beschaffung unterstützt we			rden	
TPN	1 50						
1	-	Leistungskabel	CAB-POW-U-STEC23-D5000-T-LXXXX (einphasiges Motorkabel)	singletec Serie 923	offene Kabelenden		
1	SIM2050D IP20	Leistungskabel	CAB-POW-U-STEC23-D1600-T-LXXXX (einphasiges Motorkabel)	singletec Serie 923	offene Kabelenden	1 0 0 5	
_	-	Signalkabel Resolver	CAB-SIG-R-CT_SPD0000-S-LXXXX	speedtec Serie 923	offene Kabelenden	1 m; 2 m; 3 m; 5 m	
2	SIM2050D IP20	Signalkabel Resolver	CAB-SIG-R-SIM_1C-D0000-S-LXXXX	speedtec Serie 923	Sub-D Stecker 9-polig; Temp. Sensor aus Stecker separat herausgeführt		
5	_	Betriebsbremse*	im Aktuator AC enthalten	direkter Kabelabgang	M12 Stecker 4-polig	0,4 m	
6	_	Zusätzlicher Drehzahlgeber	Kabel nicht im Leistungsa	ngebot; auf Anfrage kann b	ei der Beschaffung unterstützt we	erden	

^{*} Anschluss an Safety SPS oder an Regler durch eigenständige Konfektionierung; Verlängerungskabel (M12 auf offenen Kabelenden) auf Anfrage verfügbar.



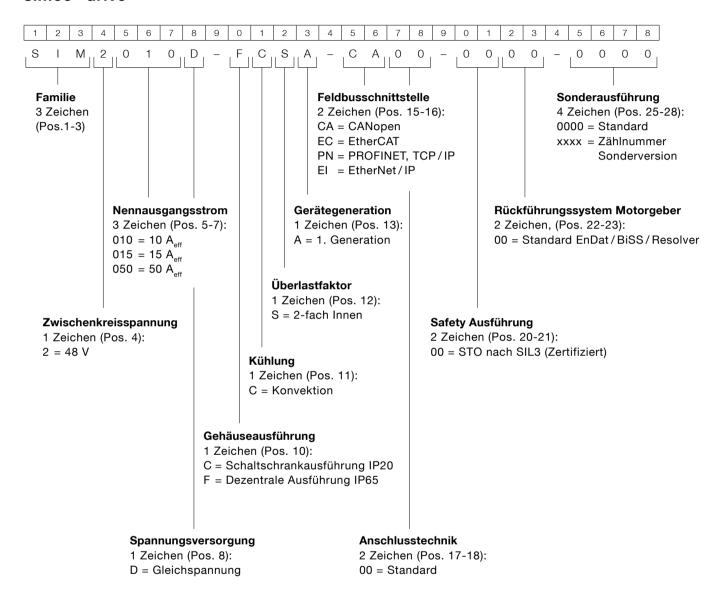
SIM2002D, SIM2010D, SIM2015D und SIM2050D IP20

	Zubehörart	Bezeichnung	Schnittstellen				
Nr.			Antriebsverstärker	Steuerung / Antriebs- verstärker 2 / PC		Vorzugs- längen	
Fel	Feldbus CANopen						
1	Feldbuskabel CANopen	CAB-BUS-CAN-RJ45-FLLXXXX	RJ45 Stecker, 8-polig	freies Leitungsende	-	5 m	
1.1	CAN Sub-D-Stecker	SUBCON-PLUS-CAN/PG	-	-	Stecker 9-polig mit Kabelein- und -ausgang sowie schalt- barem Abschlusswiderstand	-	
2	Feldbuskabel Verlängerung CANopen	CAB-BUS-CAN-RJ45-RJ45-LXXXX	RJ45 Stecker, 8-polig	RJ45 Stecker, 8-polig	-	1,5 m; 5 m	
3	Abschlusswiderstand CANopen	CAB-BUS-CAN-RJ45-TERMINAT	-	RJ45 Stecker, 8-polig	Abschlusswiderstand nur nötig für CAN-Kommunikation	-	
Fel	Feldbuskabel EtherCAT/PROFINET/EtherNet/IP						
4	Feldbuskabel EtherCAT/PROFINET	CAB-BUS-ETH-RJ45-RJ45-LXXXX	RJ45 Stecker, 8-polig	RJ45 Stecker, 8-polig	-	1,5 m; 3 m; 5 m; 7,5 m; 10 m	
Inb	Inbetriebnahme						
5	Verbindungskabel RS 232	CAB-BUS-RSRJ12-SF09-LXXXX	RJ12 Stecker, 6-polig	Sub-D Stecker, 9-polig	Verbindungskabel RS 232 zu Diagnosezwecken, Inbe- triebnahme mit MotionGUI	3 m	



SIM2002D und SIM2010D IP65

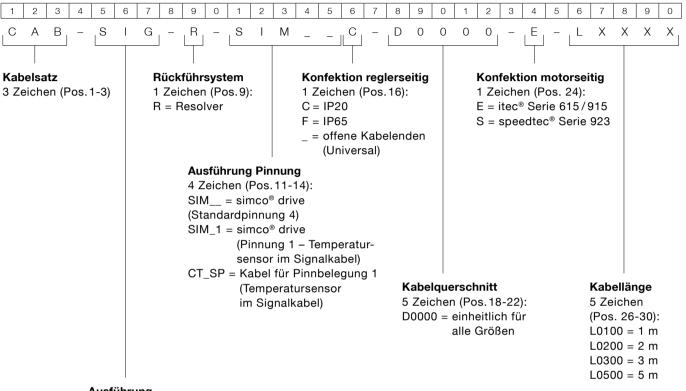
	Zubehörart	Bezeichnung	Schnittstellen				
Nr.			Antriebsverstärker	DC-Spannungsversor- gung/Steuerung/An- triebsverstärker 2/PC		Vorzugs- längen	
Sp	Spannungsversorgung						
1	Spannungsversorgung	CAB-SUP-SIM2010D-F-D0075-LXXXX	itec Serie 915	freies Leitungsende	DC Spannungsversorgungs- kabel	2 m; 5 m	
Fel	dbus CANopen						
2	Feldbuskabel CANopen	CAB-BUS-CAN-M12M-FLLXXXX	M12 Stecker 5-polig A-codiert	freies Leitungsende	-	5 m	
2.1	CAN Sub-D-Stecker	SUBCON-PLUS-CAN/PG	-	-	Stecker 9-polig mit Kabelein- und -ausgang sowie schalt- barem Abschlusswiderstand	-	
3	Feldbuskabel Verlängerung CANopen	CAB-BUS-CAN-M12M-M12M-LXXXX	M12 Stecker 5-polig A-codiert	M12 Stecker, 5-polig A-codiert	-	0,5 m; 1 m	
4	Abschlusswiderstand CANopen	CAB-BUS-CAN-M12M-TERMINAT	-	M12 Stecker, 5-polig A-codiert	Abschlusswiderstand nur nötig für CAN-Kommunikation	-	
Fel	Feldbuskabel EtherCAT/PROFINET/EtherNet/IP						
5	Feldbuskabel EtherCAT/PROFINET	CAB-BUS-ETH-M12M-M12M-LXXXX	M12 Stecker 4-polig D-codiert	M12 Stecker, 4-polig D-codiert	-	1,5 m; 3 m; 5 m; 10 m	
Inb	Inbetriebnahme						
6	Verbindungskabel RS 232	CAB-BUS-RSM12M-SF09-LXXXX	M12 4-polig	Sub-D Stecker, 9-polig	Verbindungskabel RS 232 zu Diagnosezwecken, Inbe- triebnahme mit MotionGUI	5 m	


Bestellschlüssel

TAS

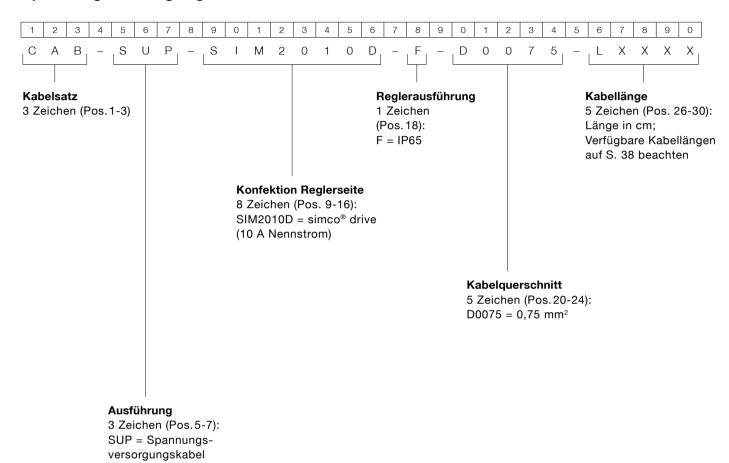

Gerne konfigurieren wir für SIE Ihr passendes iTAS® System.

simco® drive


Bestellschlüssel

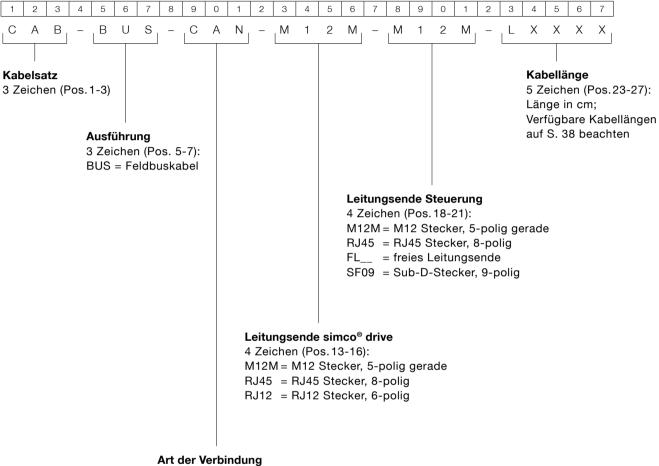
Leistungskabel iTAS

Signalkabel iTAS



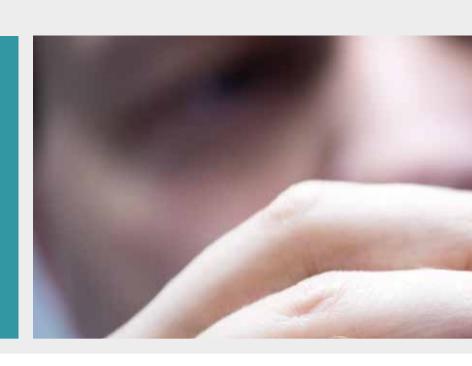
Ausführung

3 Zeichen (Pos. 5-7): SIG = Signalkabel


Bestellschlüssel

Spannungsversorgung simco® drive

Feldbuskabel und Verbindungskabel RS232


3 Zeichen (Pos. 9-11):

CAN = CANopen Feldbuskabel

RS_ = RS232 Verbindungskabel

ETH = EtherCAT/PROFINET Feldbuskabel

Unsere Dienstleistungen im Überblick

PRE-SALES		AFTER-SALES		
Planung	Investition	Nutzung	Reinvestition	
Beratung & Auslegung Kundenschulung Info & CAD-Finder	Auslegungssoftware cymex® Engineering Sensorik cymex® Statistik	Betriebsanleitung Inbetriebnahme Hol- & Bringservice Reparaturservice Präventive Instandhaltung	Modernisierungsservice	

Mit unserem **Service-Konzept** setzen wir auch im Bereich der Dienstleistungen neue Maßstäbe. Wir sind für Sie da, angefangen bei der ersten Idee bis hin zum gesamten Lebenszyklus Ihrer Anwendung.

Kontaktdaten

PRE-SALES	
1) 1) 1 (' / 1 ('	

Beratungshotline

Für die zuverlässige und kompetente Auslegung.

Telefon: +49 7931 493-15800 Fax: +49 7931 493-10905

E-Mail: info@wittenstein-cyber-motor.de

Service-Hotline

AFTER-SALES

Für die schnelle und unbürokratische Hilfe zu Reparaturen und Fragen zu gelieferten Produkten.

Telefon: +49 7931 493-15900 Fax: +49 7931 493-10903

E-Mail: service@wittenstein-cyber-motor.de

Technical Support

Bei Fragen zur Installation, Inbetriebnahme und Optimierung.

Telefon: +49 7931 493-14800

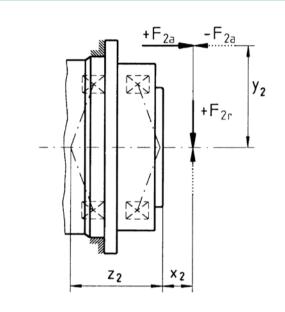
E-Mail: wcm-support@wittenstein.de

Detaillierte Informationen erhalten Sie unter www.wittenstein-cyber-motor.de

Informationen zur Projektierung

Auslegungshinweise Kippmoment

Die technischen Daten des Katalogs beschreiben bereits das Kippmoment der TAS-Antriebe in den unterschiedlichen Ausstattungspaketen.


Soll allerdings das TAS mit einem spezifischen Rad eingesetzt werden, kann zusätzlich aus den vorliegenden Radial- und Axialkräften das auftretende Kippmoment bestimmt und mit dem zulässigen Wert verglichen werden.

$$M_{2k} = \frac{F_{2a} * y_2 + F_{2r} * (x_2 + Z_2)}{1000}$$

$$M_{2k} \le M_{2K \, max}$$

Entsprechende Werte für z₂ finden Sie in folgender Tabelle:

TAS	004	010	025	050
z ₂ [mm]	57,6	82,7	94,5	106,8

Notizen

cyber motor

WITTENSTEIN cyber motor GmbH \cdot Walter-Wittenstein-Straße 1 \cdot 97999 Igersheim \cdot Germany Tel. +49 7931 493-15800 \cdot info@wittenstein-cyber-motor.de

WITTENSTEIN Inc. \cdot 1249 Humbracht Circle \cdot Bartlett, IL 60103 \cdot USA Tel. +1 630 540 5300 \cdot info@wittenstein-us.com

WITTENSTEIN S.P.A. · Via Giosuè Carducci 125 · 20099 Sesto San Giovanni MI · Italy Tel. +39 02 241357-1 · info@wittenstein.it

Katalog_iTAS_d_2017_l Änderungen vorbehalten!